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at m/z 1411 and 1305 accounting for allylic cleavages at C-
64/C-65 and C-56/C-57 were prominent in the spectra. These
MS results coupled with NMR data lead to the whole structure
of amphidinol. The stereochemistry of 1 remains unknown because
its 27 chiral centers are remote and most of them reside on acyclic
parts.

Amphidinol (1) is the first representative of a new class of
polyketide metabolites and exhibits potent antifungal and he-
molytic activities.
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We recently reported new methodology for the intramolecular
4 + 3 cycloaddition reaction based on the paradigm defining the
“chameleon” nature of the sulfone functional group.!”® Thus,
treatment of a solution of sulfone 1 in CH,Cl, with TiCl, gave
cycloadduct 2 as a single isomer in good yield (eq 1).! Unfor-
tunately, the generality of this process is limited by the reluctance
of alkoxyallylic sulfones with less alkyl substitution to undergo
the reaction.* It appeared that a means to circumvent this
problem could be found using alkoxyallylic sulfones which pos-
sessed substituents capable of assisting the ionization process
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through resonance delocalization of the incipient positive charge.’
Obvious choices included sulfur-, oxygen-, or nitrogen-containing
functional groups as substituents. We chose to examine sulfur
initially.

To that end, treatment of either 2-methoxy-3-(phenyl-
sulfonyl)- 1-propene (3) or its double-bond isomer 4 with phe-
nylsulfenyl chloride followed by DBU gave 5 in 60% isolated yield
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Figure 1. Putative complex between 7a and TiCl,.

after trituration with terz-butyl methyl ether.5® Deprotonation
with n-BuLi and alkylation with methyl iodide gave 6 in 90% yield
with complete regiocontrol.’ Subsequent deprotonation and
alkylation with 2-(3-iodopropyl)furan gave (£)- and (Z)-7 in 91%
combined yield, along with recovered starting material'® (Scheme
D).

Interestingly, treatment of (E)-7 with TiCl, (0.02 M, CH,Cl,,
~78 °C, inverse addition) resulted in only a 12% yield (based on
recovered starting material) of cycloadduct 9 as a mixture of two

(6) Stirling, C. J. M. J. Chem. Soc. 1964, 5856.

(7) Barrett, A. G. M.; Dhanak, D.; Graboski, G. G.; Taylor, S. J. Org.
Synth. 1989, 68, 8.

(8) The nature of the rearrangement in the conversion of 4 to 5§ has not
been investigated.

(9) The stereochemistry of the double bond of 6 was established by X-ray
crystallography: Enraf-Nonius CAD4 diffractometer, Mo Ka radiation,
C,7H,50,S,, space group PI, a = 10.007 (4) A, b = 10.922 (6) A, ¢ = 8.353
(5)A, V=12830.2(7) A%, Z = 2,d 4 = 1.338. The structure was solved (2348
reflections, I > 2.54(I)) by direct methods and refined to R = 0.037 (R,, =
0.056). See supplementary material for more details.

(10) Recovered starting material was not stereochemically homogeneous.
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4(a) (1) NaH, THF. (2) (E)-6-Iodo-1,3-hexadiene, reflux. (b) (1)
LiCl, DMF/H,0, heat. (2) (Ethoxyvinyl)lithium, THF. (3) n-BuLi,
then PhSCI, THF, -78 °C. (c) Tf,O (1l equiv), 2,6-di-ters-butyl-
pyridine (2 equiv), CH,Cl,, 25 °C.

epimers. Normal addition either destroyed (E)-7 or resulted in
the recovery of starting material. Fortunately, (Z)-7 reacted
smoothly under the same reaction conditions to give a 67% yield
of 9 as a mixture of isomers. On the basis of these results, we
speculate that (£)-7 can serve as a bidentate ligand for TiCl, to
produce a chelate which is unreactive with respect to ionization
to alkoxyvinyl thionium ion 8 and subsequent cycloaddition (Figure
1).!*12 The stereochemistry of the cycloadduct 9 with respect
to the angular positions was assigned in accordance with stereo-
chemical assignments made on related cycloadducts.! It was clear
from the NMR spectrum of 9 that the isomers arose from epim-
erization at carbon 7 (azulenone numbering).

In order to address the difficulties associated with the cyclization
of (E)-7, we considered other means of generating 8 and concluded
that the Pummerer rearrangement of alkoxyallylic sulfoxides
offered one of the best options.!2!> The substrate needed to
examine this idea was prepared as shown in Scheme II.
Treatment of 2-(3-chloropropyl)furan!* with magnesium and
quenching the resulting Grigand reagent with excess acetic an-
hydride gave ketone 11 in 72% yield.!* Condensation of 11 with
(ethoxyvinyl)lithium!® and treatment with phenylsulfenyl chloride
gave sulfoxide 12 as a 1:1 £/Z mixture."”

After some experimentation we found that the best conditions
for 4 + 3 cycloaddition consisted of treatment of a 0.017 M
CH,Cl, solution of 12 with Tf,O and 2 equiv of 2,6-lutidine at
room temperature. This gave enol ether 13 in exceptionally high
yield. The stereochemical assignment was made on the basis of
aforementioned considerations.!

A substrate containing a free diene was tested as well (Scheme
III). Alkylation of the sodium enolate'® of 14 with 6-iodo-1,3-
hexadiene!® gave keto ester 15 in good yield. Krapcho decar-
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Vol. 3, Chapter 31.

(12) Vinyl thionium ions have found interesting application in several
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boxylation?® and straightforward manipulations gave 16 as a 1:1
mixture of isomers. Considerable difficulties were associated with
attempts to induce cycloaddition using protocols successful with
12. Elimination to form 18 as a mixture of regioisomers competed
effectively with cycloaddition over a wide range of conditions.
Eventually we found that treatment of a 0.015 M CH,Cl, solution
of 16 with Tf,O in the presence of 2 equiv of 2,6-di-tert-butyl-
pyridine at room temperature gave cycloadduct 17 as a 1:1 mixture
of isomers in 53% isolated yield. Apparently, a combination of
the decreased nucleophilicity and conformational mobility of the
diene in 16 relative to the furan in 12 is detrimental to the cy-
cloaddition process.?!

In summary, we have invented two convenient means of gen-
erating alkoxyvinyl thionium ions for use in the intramolecular
4 + 3 cycloaddition reaction to form functionalized, fused 5,7
carbocyclic systems. Work continues on improving the stereo-
selectivity of these reactions, applying the methodology to synthetic
targets, and expanding the reaction profile of these unique in-
termediates.
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The significant role played by radical pathways is now widely
recognized'- for organometallic reagents once believed to undergo
even-electron changes exclusively. These pathways are evident
in reactions as diverse as olefin hydrogenation by metal hydrides®
and radical-chain substitution* of metal halide complexes. The
reactivities of both metal hydrides®> and halides*$ with respect
to atom transfer (abstraction) are now being systematically ad-
dressed. However, the self-exchange process itself has not received
attention. Here we apply “isotopically labeled” materials and a
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